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Flutter of thin cylindrical shells in cross flow 
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This paper presents an analytical model for the aeroelastic instability of an infinitely 
long cylindrical shell in cross flow. The mean flow field is represented by a free- 
streamline model, and the perturbation flow field by a velocity potential associated 
with deformation of the shell cross-section; motions of the shell are described by 
Flugge’s two-dimensional equations. It is shown that certain types of shell motions 
induce a negative aerodynamic damping, which increases with flow velocity; for 
sufficiently high flow, it overcomes the positive dissipative damping of the system, 
precipitating flutter, sequentially in the second, third and higher circumferential 
modes of the shell - each with specific orientation of the nodal pattern with respect to  
the free-stream vector. These analytical predictions are in agreement with observations 
in wind-tunnel experiments; quantitatively, predicted and measured flow-velocity 
instability thresholds are of the same order of magnitude. 

1. Introduction 
Wind-induced ovalling, or ‘breathing ’, oscillations of thin metal chimney stacks 

were first recorded in the 1950s (Dickey & Woodruff 1956, Dockstader, Swiger & 
Ireland 1956). I n  contrast to the well-known vortex-induced lateral oscillations of 
cylinders in cross flow, ovalling involves harmonic deformation of the shell cross- 
section, while the long axis of the shell remains stationary. Thus, in the course of 
ovalling in the nth circumferential mode, the radius r of a cylindrical shell, a t  an 
azimuthal position 8, varies as 

r (0 , t )  = a(l+ecosn0eiWt), 

a being the radius of the undeformed circular cross-section, ea the maximum displace- 
ment from the mean position, and w the circular frequency of oscillation. Third-mode 
oscillation (n = 3) is shown in figure 1 (a). Etymologically, ovalling should strictly 
apply only to the second circumferential mode (n = 2) ,  but the term is widely used for 
higher modes as well, i.e. for all n 2 2. 

It has been commonly held that ovalling oscillations are induced by the alternate 
vortices shed in the wake of the cylinder (Dockstader et al. 1956, Johns & Sharma 
1974). The mechanism was supposed to be similar to that causing lateral oscillation 
at, or near, resonances between the vortex-shedding and natural frequencies of a 
cylinder in cross flow; in the case of ovalling, however, it was postulated to be suffi- 
cient that  a condition of subharmonic resonance exist, i.e. that  the vortex-shedding 
frequency be an integral submultiple of the ovalling frequency of the shell. 

Recently, Paidoussis & Helleur (1979) have shown experimentally that this 
I4 F L h i  I15 
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(a  ) ( b )  
FIGURE 1. ( a )  Cross-sectional view of the third circumferential mode of oscillation, showing 
the two extreme positions of the middle surface of the shell in the course of a cycle of oscillation : 
( b )  the system under consideration, defining various quantities used in the analytical model. 

sub-harmonic relationshipappears toexist only close to the onset of oval1ing.t Beyond 
that point, the oscillation persists over a wide range of flow velocities, yet this relation- 
ship no longer holds; the ovalling frequency remains sensibly constant and close t'o 
the appropriate natural frequency of the shell, while the vortex-shedding frequency 
increases linearly with flow velocity, following a constant Strouhal-number relation- 
ship. Hence, i t  was concluded that, beyond the threshold of ovalling, the oscillation 
would have to be sustained by a mechanism other than synchronization with vortex 
shedding. Moreover, further experiments, by the same authors, with a long splitter 
plate behind the shell indicated that ovalling still occurs - albeit a t  a slightly higher 
velocity threshold - despite the fact that  periodic vortex shedding had been sup- 
pressed. This demonstrates that, even a t  its onset, ovalling does not depend on the 
existence of any alternating periodicity in the wake.$ 

With Paidoussis & Helleur's (1979) experiments it became clear that the mechanism 
underlying ovalling is different and more complex than had previously been supposed. 
It is in the context of the search for this mechanism that the present paper may be 
viewed; alternatively, i t  may be considered as a specific study of the behaviour of 
long, thin cylindrical shells in cross flow. 

I n  this paper a theory is developed to study the stability of a thin elastic cylindrical 
shell in incompressible two-dimensional cross flow. It is obviously much simpler to 
examine this problem, rather than the more 'realistic ' one involving a free end, thus 
eliminating the complexities of three-dimensional flow over the top. (Prudently, i t  
was first confirmed in the laboratory that a shell spanning the wind tunnel and sup- 
ported a t  both ends is also subject to ovalling.) In  the model, i t  has been assumed that 

f Actually, very recent, yet unpublished measurements by Suen (1981) indicate that, although 
an integral (or approximately integral) relationship between ovalling and vortex shedding does 
occur frequently, it is nevertheless often entirely absent, even at the on,set of ovalling. 

$ One of the referees of this paper suggested the possibility of synchronous, symmetric vortex 
shedding from the two sides of the cylindrical shell, as yet another excitation mechanism through 
which ovalling oscillations could be induced by vortex shedding. This type of vortex shedding 
has been found to occur in conjunction with in-line oscillation of cylinclers in cross flow (King, 
Prosser & Johns 1973). However, in a special set of experiments for testing this hypothesis, the 
authors found that, vortex shedding - both before and after the onset of ovalling - is of't,he nor- 
mal, antisymmetric type. (These experiments involved two hot -wire anemometers placed close 
to the separation points on either side of the shell; the phase difference in cross-sp~ctml-dcnsity 
analysis of the two signals was found always to be approximately I S O O . )  
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ovalling oscillation is entirely due to aeroelastic coupling between the shell and the 
fluid, independently of any periodicity due to vortex shedding in the wake, the exist- 
ence of which is entirely ignored. 

2. Theory 
General approach 

I n  this analysis, the shell is first idealized to be infinitely long, so that the problem 
may be treated as two-dimensional. The cross flow is further simplified by regarding 
the entire field as quasi-irrotational. The wake is separated from the outer flow by a 
dividing streamline. Within the wake, the von K&rmBn vortex street will be totally 
ignored, giving a zero flow velocity in this region. Hence, the flow field is assumed to 
be steady, except for the disturbances arising from the vibration of the shell. More- 
over, it is assumed that the time-averaged positions of separation of the mean flow 
from the body surface are unaffected by the small vibrations of the shell. The effect 
of turbulence is ignored throughout. 

The shell is considered to be purely elastic, homogeneous and isotropic. To study 
its stability, a small-amplitude vibration in a given circumferential mode is imposed 
on the shell. As this study is principally concerned with the onset of ovalling, the 
vibration amplitude is taken to be sufficiently small, to allow linear shell theory and 
linearized fluid mechanics to  be utilized. I n  the same spirit, the boundary conditions 
on the shell surface will be applied at  the equilibrium position. 

In  its essence, the analysis determines the perturbation flow field associated with 
shell motions, and then the resultant pressure fluctuations on the shell surface, the 
effect of which would indicate whether the initial vibration is attenuated or amplified. 

I n  addition to this analysis, involving an infinitely long shell, an analytical model 
has been developed for a finite shell with clamped ends in two-dimensional cross flow. 
This model is considerably more complex, insofar as the equations of motion of the 
shell are concerned, yet provides no additional insight into the problem; hence, 
although some numerical results of that analysis will be given, the details will not be 
presented in this paper. 

Equations of motion and boundary conditions 

Consider a uniform thin cylindrical shell of infinite length, mean radius a and thickness 
h, subjected to a uniform cross flow of incident velocity U ,  as shown in figure 1 ( b ) ;  
the shell is filled with stationary fluid of the same density as the outer flow. As the 
problem is two-dimensional, only planar displacements of the middle surface of the 
shell, in the plane of figure 1, are considered: v(6, t )  and w(6, t ) ,  in the circumferential 
and radial directions, respectively, measured from the equilibrium (circular) 
configuration. 

In this case, the equations of motion of a shell of density ps, Young’s modulus E ,  
and Poisson’s ratio v, according to Flugge ( 1  957) reduce to 

14-2 
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wherex = h2/12az,y = psa2(1 - v  )/ E andq, = pi -pe, pi andpe being respectively the 
internal and external pressure on the shell surface. 

These equations being linear, the pressure difference qr may be separated into two 
components: qr0(6), which is due to the static loading of the mean flow, and qF(0, t ) ,  
which is due to perturbations associated with shell deformations characterized by 
v*(0, t )  and w*(0, t ) .  Considering deformations associated with qro(8) to be negligible,? 
(1) and (2)  may be viewed as relationships among q:, v* and w*, from which the static 
components have been filtered out. 

Since the flow field is assumed to be irrotational outside the wake, a velocity poten- 
tial (I,(r, 0, t )  may be defined by 

1 a@ 
V# = -- m 

ar r at?’ v, = - 

where v,(r, 0, t )  and vo(r, 0,  t )  are respectively the radial and tangential velocities a t  
position ( r ,  0). As (I, must satisfy Laplace’s equation, which is linear, one may further 
let 

8, t )  = $o(r, 8) + $*(r,  0, t ) ,  

where #,(r, 0) is associated with the mean flow, and $*(r,  8, t )  with the perturbation 
flow field, due to oscillations of the shell. Once (I,(?, 0,t) is known, the pressure may be 
determined from Bernoulli’s equation for unsteady flow, 

where p is the static pressure measured relative to the stagnation pressure of the free 
stream, p is the fluid density, and V2 = v,” + v;; the term F( t )  normally appearing on 
the right-hand side of (3) may be suppressed for incompressible flow (Lamb 1957) - 
or alternatively may be considered to have been absorbed in a(D/at. 

It is noted that $, is associated entirely with the external flow, and may be defined 
in terms of the radial and tangential velocities on the surface of a stationary cylinder, 
1.e. 

where f ( 0 )  may be determined empirically, or by semi-empirical methods such as 
that developed by Parkinson & Jandali (1969). According to all reported cases, 
ovalling experiences have occurred in the Reynolds-number range Re = 104-106; 
hence the boundary-layer thickness on the shell prior to separation is sufficiently thin 
for the pressure change across i t  to be negligible. The local steady-state velocity just 
outside the boundary layer may then be related t o  the surface static pressure p by 
Bernoulli’s equation for the steady flow, so that 

f ( 0 )  = (vUgIr&q = (l-CpP for 101 G p s ,  (4) 

where C,, is the pressure coefficient defined by 

t For the shells used in the experiments, bearing in mind their length/radius and thickness/ 
radius ratios, this may be considered to be supported by experimental evidence : the natnral 
freqiieircies of oscillntion of the shcll with and without flow are essentially the same. 
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in terms of the free-stream static pressure p m ,  and where Ps is the angular position of 
the point of separation. In  the wake, the surface flow may be considered to be negligible 
so that 

f(0) = 0 for 71 3 101 > Ps. (5) 

In this paper, f (0) was determined empirically in terms of the measured C, for a rigid 
cylinder in cross flow. For example, using Roshko's (1954) data for Re = 1.45 x lo4 
and employing a least-square-fit technique, f (0) may be approximated by the fourth- 
order polynomials 

f(0) = 1.6073101 + 0*570010)2- 0*939418)3 + 0*171410)4 

for 101 6 1.484 rad ( 8 5 O ) ,  (6) 

for 101 6 1.396 rad (SO'), ( 7 )  

f(0) = 1.5137181 + 0*51281812- 0*941810)3+ 0.17331014 

for a cylinder without and with a splitter plate, respectively. It is noted that, as one 
would expect, the flow is symmetric relative to the stagnation point (0 = 0). 

Turning next to the perturbation velocity potential q5* it is noted that i t  has com- 
ponents associated with both internal and external fluids, 4: and 4: respectively. 
I n  view of (3), the former gives rise to pressure fluctuations 

and the latter t o  

correct to first order of small quantities, having introduced the approximation 

Finally, 4: and 4; may be related to the shell deformation. For a fluid particle on 
v2 2: uzjye) + 2uf(0)  a-ya#,*/ae) I,=,.t 

the outer surface of the shell, the radial velocity is given by 

Similarly, for the internal fluid 
aw* 

(9) 

t Of course, it is realized that the mean-flow component of (3),  after (4) and ( 5 )  have been 
substituted in it, is incorrect, as it corresponds to a mean pressure distribution such that the 
pressure in the wake is effectively equal to the stagnation pressure. This relation, however, is 
not used (nor is it usrful) in this analysis, the assumption having been made that the steady 
pressure field induces no appreciable deformation of, nor stresses in, the shell. 
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3. Analysis 
For harmonic shell motions, it may be assumed t'hat 

4* = R(r) T ( 0 )  ei'CJt, 

which substituted into Laplace's equation, in cylindrical co-ordinates, gives 

--+--=---- - h2, 
r2d2R r dR 1 d2T 
R dr2 R dr T a02 

where A2 has to be a positive integer in order to satisfy the condition $*(0) = 4*(0 + 2n). 
Hence 

T(B) = A,cosh0+A2sinh0, 

for some constants A ,  and A,, to be determined. 
So far, all observations on the ovalling process have revealed that, independently 

of the circumferential mode excited, either a node or an antinode faces the free stream. 
Therefore the analysis will be restricted to  conform to either of these two observed 
conditions. For the type of oscillation with an antinode facing the free stream, the 
symmetry of the flow field would render 

and, in view of the symmetry of the steady cross flow, f ( 0 )  = 0, leading to 

( a 4 , * / w I r = a , 8 = 0 =  0. 

zye) = ~ , c o s ~  
This clea,rly implies that  

for such configurations. The cases with a node facing the free stream may be tackled 
in very similar fashion, as highlighted in the appendix. 

Now, i t  may easily be seen that 

R(r) = Dr-h + Erh, 

for some constants D and E .  Physically, one would expect 4: -+ 0 as r -+ 03 and 4; 
to be finite a t  r = 0. Hence, the perturbation potential, external and internal to the 
shell, must take the form 

W 

$: = eiwt C D(h) r-h cos At?, 
A=O 

m 

4; = eiot C E(h)  rx cos hO. 
h=O 

To proceed with determining D(h) and E(h) ,  w* is expanded in series form 

m 
w* = eiWt B, cos (21 + 1) n0, 

z=o 

so chosen that the number of nodal points for the nth mode be 2n, as required. Con- 
sequent,ly, v* must have the similar form 

m 
v* = &it A,sin (2Z+ 1)nO. 

1 = 0 
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Now, substitution of (12) and (10) into (8) yields 

a3 U n  m 
Z hD(h)a-"-lcosh8 = --f(8) C. B,(21+ 1)sin (21+ l )n8 - iw  C B,cos(2Z+ l )n8.  

1 = 1  a 1 = 0  1=0 

For a particular h = hi, one may solve for D(hj )  by multiplying both sides by coshj8 
and integrating over 8 from 0 to n, whereby it may be shown that 

- 2 ah+, W 

D(h) = -- sinbBcosh8f(B)dB 
n h  a 2=0 

forh = 1 , 2 , 3 ,  . . . , where b = (21 f I )  n and S,, is the Kronecker delta. D(0) is arbitrary, 
since only the derivative of $,* is specified a t  the boundary. 

By similar means one may obtain 
iw  

E ( h )  = - h al-A B,S,,, (15) 

forA= 1 , 2 , 3  ,... . 
From (10) and (14) i t  is obvious that p z  will be specified in terms of a double series, 

and some simplification is desirable before proceeding further with the analysis. 
Fortunately, the modal shapes are adequately described by the leading terms in the 
series of (12) and (13), suggesting 

w* = eiWt B, cos n8, v* = eiWt A ,  sin nB; (1% (17) 

the validity of this approximation was tested a posteriori by repeating the analysis 
with a three-term approximation; the difference in the results was found to  be negli- 
gible. Then, letting p" = P" eiwt, one obtains 

00 

C. F1(h) sin h8- U i w f ( 8 )  sin n8 
A = l  

where 

a 
n 

PT = pB,02- cosn8-piwE(O), 

p1(h) = / ' f ( f )  sin nf cos h f d ~ .  
0 

Finally, substituting (16)-(19) into (1) and (2) yields two equations of the form 

~~11Ao+a12Bo = 0,  a21Ao+a~22Bo = 0, 
where 

a,, = n2 - y d ,  a,12 = n, a2, = inn, 

and F,(h) = I:f($)sinh[cosn<d<. For non-trivial solutions of A ,  and B,, the asso- 
ciated determinant must vanish, giving the characteristic equation for the frequency 
w - which will generally be complex. 

The foregoing analysis applies t'o shell deformations such that an antinode fa,ces 
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FIGURE 2. Argand diagram of the complex frequenciesf of the second and third modes of an 
infinitely long shell in cross flow, as functions of the dimensionless flow velocity u.  0 ,  2nd mode, 
no splitter plate; 0, 2nd mode, splitter plate: A, 3rd mode, no splitter; 0, 3rd mode, splitter. 

the free stream. Using a similar approach, the case of a node facing the stream has also 
been investigated. To avoid unnecessary duplication, only an outline of the necessary 
changes in the analysis is given here, in the appendix. 

4. Theoretical results 
Calculations were conducted for an infinitely long shell of radius, thickness and 

material properties identical with one of the shells tested in the experiments to be dis- 
cussed next, namely a = 38.1 mm, h = 0.51 mm, E = 0.28 x lO1O N/m2, ps = 1-29 x 
lo3 kg/m3 and v = 0.4. The complex frequenciesf( = w / 2 n )  [in Hz] of the second and 
third circumferential modes are shown in figure 2 in the form of an Argand diagram, 
for increasing dimensionless flow velocity u, defined by 

u = U(ps( l  - V2)/E)*. 

Referring now to figure 2, i t  is noted that, as internal dissipation (material damping) 
has not been included in the theoretical model, the frequencies a t  u = 0 are wholly 
real. For u > 0, however, it is seen that second-mode oscillation (n = 2) with a node 
facing the stream is associated with a negative aerodynamic damping, i.e. Y ( f )  < 0 ;  
if, on the other hand, an antinode faces the stream, the motion is aerodynamically 
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FIGURE 3. Variation of the negative aerodynamic damping - a,, with dimensionless flow 
velocity u for the second and third modes of an infinitely long shell in crom flow. Symbols as 
in figure 2. 

positively damped. The opposite is true for third-mode (n = 3) oscillations. It is also 
seen that similar results obtained in the two cases, without and with a splitter plate, 
except that  in the latter case 14( f ) I  is generally smaller. 

These results may be interpreted as follows. With increasing flow velocity the 
vibration frequencies remain almost constant, as the values of 9(f) for u > 0 are 
only slightly lower than the corresponding ones for u = 0. The aerodynamic damping, 
however, conveniently characterizedby the logarithmic decrement sad = 2n9( f )/9( f ) 
increases almost linearly with u, as shown in figure 3. For sufficiently high flow velocity, 
the negative aerodynamic damping associated with each of the two modes will even- 
tually exceed the corresponding dissipative-modal-damping logarithmic decrement, 
&md; a t  that point the net energy transfer from the fluid to the shell exceeds the energy 
lost through dissipation, and oscillations will be amplified, i.e. this is the threshold of 
instability in the mode concerned. 

Thus, the mechanism of instability is recognized as being that of single-degree-of- 
freedom flutter, rather than the so-called ‘ classical ’ two-degree, or coupled-mode 
flutter (Dowel1 1975; Scanlan 1981 a,  b ) .  The latter arises through aerodynamic 
‘stiffness’ terms, causing the frequencies of two modes of the system, initially different 
a t  zero flow, to coincide (coalesce) at some given flow velocity; this gives rise to 
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instability due to coupling of the two modes.? In  contrast, the instability obtained by 
this analysis is associated with the aerodynamic ‘damping ’ terms, where the system 
becomes unstable in one of its modes when the aerodynamic damping forces associated 
with motions in that one mode become negative and sufficiently large to overcome the 
structural dissipative forces - a t  which point the system loses stability as described 
in the paragraph above.$ 

As an illustration of how figure 3 may be utilized, consider the case where the modal 
dnmping Smd = 0-02 for both n = 2 and n = 3. Then, as the threshold of flutter occurs 
when Sm, = -Sad, one obtains, with the aid of figure 3, the critical flow velocities 
associated with second- and third-mode flutter, namely ui2) = 2.50 and uL3) = 11.75.  

I n  summary, the results obtained in this section indicate that: 
(i) shell flutter is possible in the absence of any periodicity in the wake of the shell; 
(ii) for the two modes involved, second-mode flutter should develop with a node 

(iii) if modal damping in the two modes is similar, second-mode flutter should occur 

(iv) the critical flow velocities, uj2) and @), are raised somewhat by the presence of 

facing upstream, while third-mode flutter with an antinode facing upstream;$ 

a t  a lower flow velocity than third-mode flutter,II 

a splitter plate in the wake. 

5. Experiments 
General description 

The experiments were conducted in a low-speed, open-return, suction wind tunnel 
with a closed working section (Wygnanski & Newman 19611, 0.91 m (3  ft)  wide and 
0.61 m ( 2  ft) high. The cylindrical shells were spin-cast from low-viscosity epoxy 
material, with less than 3 yo variation in wall thickness. They were mounted in the 
wind tunnel as shown in figure 4. Each end of the shell was clamped to a rigid cylindri- 
cal support, which was properly sealed. Care was taken to avoid any axial loading on 
the shell while mounting it into place. 

The flow velocity was measured by standard means and has been corrected for 
tunnel blockage by Maskell’s (1965) correction, which amounts to  5 yo for shells 
76.2 mm in diameter. The amplitude and frequencies of vibration of the shell were 
registered by a fibre-optics ‘Fotonic’ sensor, mounted inside the shell so as not to 
disturb the flow around the shell. It was normally directed towards the front stagnation 

t The question may fairly be put as to whether classical flutter is also possible for the problem 
at hand, in addition to single-mode flutter. It may be postulated that the second and fourth 
circumferential modes, suitably superposed, could give rise to classical flutter, if their frequencies 
coalesce or, alternatively, in this special case, if their frequencies are in the rabio of 1 : 2. How- 
ever, neither of these frequency relationships was found to  obtain in t,he experiments - nor, 
for that matter, was i t  predicted by the theoretical model. 

1 It may be of interest to the reader to digress at this point,, so as to point out t1is.t according 
to current thinking ‘classical’ flutter is considered to be rather rarer, and single-mode flutter 
rather more common, than was hitherto t,honght t o  be the case (Scanlan 1981a, b ) .  In th i s  
connection, it is of interest that the Takoma Narrows bridge collapse, traditionally considered 
as the most dramatic illustration of failure due to classical flutter, is now attributed to single- 
degree-of-freedom torsional flutter (Scanlan 1981 a,  b ) .  

3 Indeed, it is shown that all even-numbered and odd-numbered modes follow the pattern 
exemplified by the second and the third. 

1 1  It is noted, however, that  linear theory is d i d  up to  n.1rc.w tlrc system first lows stahility, 
and strictly not beyond that point. 
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Circumferential Natural frequenoy Damping logarithmic 
mode number n ,9(f) [Hzl decrement a,, 

2 155 0.031 
3 225 0.034 

TABLE 1. The natural frequencies and modal damping of the shell tested. The natural 
frequencies given here are those associated with the first axial mode of the shell. 

point, or 45" to  it, but could be rotated to locate the nodes and antinodes of vibration 
and hence the orientation of the modal shapes. Wake periodicity was also monitored, 
by a hot-wire anemometer placed downstream of the shell a t  a distance three-and-a- 
half times the shell diameter. 

Both the hot-wire and Fotonic-sensor signals were sampled continuously by a 
Hewlett-Packard 54208 digital signal analyser. The dominant frequencies could 
readily be displayed in the form of a power-spectral density, such as shown in figure 5 .  

The normal experimental procedure was to increase the flow in the tunnel gradually, 
while monitoring shell vibration on the digital signal analyser, until a measurable 
coherent vibration was noticed. At this point, the flow velocity was measured, and the 
nnalysed signals from the Fotonic sensor and hot-wire anemometer were recorded. 
The flow velocity was then incremented and the same measurements taken, up to a 
maximum flow dictated by excessive shell vibration. Measurements below the 
threshold of vibration were also made. 

To investigate the effect of periodic vortex shedding on ovalling, the experiments, 
which were first done without a splitter plate, were repeated with one (36.4 cm long, 
0.16 cm thick) placed downstream of the shell and as close to it as practicable. 

Observations and results 

A detailed description of the experiments and of the results obtained will be given in 
a subsequent paper. Here the experiments conducted with only one specific, but 
typical, shell will be outlined briefly, to  allow comparison with theory. The geometry 
and material properties of the shell were as given in 5 4, except that it was of finite 
length (56.4 cm between supports) rather than infinitely long. 

Prior to testing with flow, the natural frequencies of the shell and modal damping 
were measured in  situ with the wind turned off. The results are summarized in table 1 .  

It should be mentioned that the measured natural frequencies agree with values 
calculated by the method outlined by Blevins (1979) to  within 5 %. Damping was 
measured by an impedance technique utilizing Nyquist plots (Ray, Bert & Egle 
1969; Ewins 1975). 

The following observations were made with increasing wind speed. A coherent 
oscillation of 155 Hz was first observed at U = 17-3-17.9 m/s (u = 5.4 x 
5.6 x which was confirmed to be in the second mode, with a node facing up- 
stream; the amplitude of this mode increased, reached a maximum and then decreased, 
while a t  U = 20.8-21.4 m/s (u = 6.5 x 10-3-6-7 x a 225 Hz frequency appeared, 
which eventually became dominant; this was found to be associated with the third 
mode, with an antinode facing upstream. The results of one such typical run are 
shown in figure 6 (a) .  Similar results for a nominally identical shell, but with average 
w,zll thickness 5 yo smaller, are shown in figure 6 ( h ) .  
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FIGURE 6. The amplitude of vibration (arbitrary scale) of two nominally identical shells, 
56.4 em long and clamped at both ends, in cross flow. The measured logarithmic decrements 
for the second and third mode, rcspectively, are ( a )  6, = 0.031, 6, = 0.042, and (b )  6, = 0.031, 
6, = 0.034; other dimensions and pliysicnl properties are given in the text. 0, 2nd mode; 0 ,  
3rd mode. 

The natural frequencies remained sensibly constant with increasing flow - generally 
varying by less than 2-3 yo.? 

It is noted that the oscillation amplitude in these figures was obtained with the 
Fotonic sensor pointing 45" to the free stream; hence, third-mode amplitudes are 
relatively higher than indicated. The amplitude scale is arbitrary, but the readings 
are linearly proportional to radial displacement; the maximum amplitude attained 
before the test was discontinued - for fear of damaging the shells - was of the order 
of 0.2a, a being the radius of the shell. 

With the splitter plate in position, periodic vortex shedding was inhibited, as re- 
vealed by the hot-wire signal. However, the vibration characteristics remained the 
same, except that the critical flow velocities were raised somewhat, to U g )  N 20.4 m/s 
and Uh3) N 24.5 m/s. 

It should finally be noted that the thresholds of instability are in the Reynolds- 
number range of Re N 4 x 104; this is not far from the value in Roshko's experiments, 
from which equations (6) and ( 7 )  of the theory have been obtained, so that comparison 
between theory and experiment is meaningful (Goldstein 1952). 

t I n  this connection, it should be noted that there were additional small differences in fre- 
quencies between one test run and another, arising from ( a )  manufacturing discrepancies among 
nominally identical shells, (b )  lack of total repeatability in mounting the shells in the wind 
tunnel, and (c) temperature and humidity effects. These, together with the flow effect noted 
above, rarely exceeded 5 yo ; they are reflected in the small differences in the frequencies given 
in the various tables and figures of this paper. 
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Withont splitter plate 

With splitter plate 

2 5.5 x 10-3 0.031 
3 6.6 x 0.034 

2 6.3 x 10-3 0,031 
3 743 x 10-3 0.034 

TABLE 2. Coniparison of the negative aerodynamic damping -Sad with 
modal damping a,, a t  the measured critical-flow velocities 

0.044 
0.01 1 

0.033 
0.005 

6. Comparison between theory and experiment 
Theory and experiment may strictly be compared only in a qualitative sense, as 

the former applies to infinitely long shells and the latter to shells with clamped ends 
and finite length. Nevertheless, reviewing the observations made in $ 5 ,  it is clear 
that the theoretical predictions (i)-(iv) of 8 4 are qualitatively supported in full. 

A quantitative comparison was also attempted, in table 2, in which the negative 
aerodynamic damping -Sad a t  the threshold of flutter is compared to the modal 
damping Smd; according to theory the two should be equal. It is seen that S m d  and 
- Sad are generally of the same order of magnitude, especially the values associated 
with second-mode flutter, where linear theory should be expected to do best, as the 
system first loses stability in that mode. However, i t  is noted that, while theoretical 
and experimental third-mode frequencies a(!) are reasonably close (193 us. 225 Hz), 
second-mode frequencies are in gross disagreement: 68 us. 155 Hz. This, of course, 
reflects the difference in boundary conditions between theory and experiment; i t  
does nevertheless cast doubt on the validity of the comparison of table 2. 

To effect a more realistic comparison, a three-dimensional theoretical model was 
constructed, as mentioned in $ 2 ,  The fluid forces on the shell are determined by 
essentially the same method as before, by the use of ‘strip theory’,? but the shell is 
now considered to have a finite length and clamped ends. As a result, the shell equations 
and their solution become more complex, and details of this model are most likely of 
no great interest to the readers of this paper. However, some of the results obtained 
with this model are of interest: in table 3, the frequencies of oscillation and logarithmic 
decrements a t  the measured critical flow velocities are compared, similarly to table 2 .  
As might be expected, by taking account of the actual end conditions of the shell, 
theory is more successful in predicting the oscillation frequencies. At the same time, 
i t  is noted that the theoretical - S,, have not come closer to the experimental values 
of S m d  -bu t  they remain of the same order of magnitude. 

I n  the above discussion, comparison between theory and experiment was made in 
terms of the experimental Smd and the theoretical -dad, which emphasizes the basic 
mechanism of instability involved, as discussed in 8 4. One could equally well com- 
pare theoretical to experimental critical flow velocities. Thus, for the results of table 3, 

t According to strip theory, the fluid forces at each axial location x of the shell are still deter- 
mined by the two-dimensional theory presented here ; however, as perturbation pressures and 
forces depend on the local shell deformations, which in turn are functions of x, and hence of the 
axial-modal shape, strip theory yields an adequate approximation to the three-dimensional fluid 
forces. Of course, this approximation remains reasonable only so long as variations of shell 
displacements along the x-axis are small, so that the induced axial flow may be neglected. 
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mf) [Hzl 
r-------- 

n Expt Theory h, (expt) - 64 (theory) 
2 155 152 0.031 0.020 
3 225 204 0.034 0.01 1 

TABLE 3. Oscillation frequenoies and damping at  the measured critical flow velocities compared 
(for the shell without a splitter plate). The theoretical results were calculated with three- 
dimensional shell theory 

n = 2, one obtains Uc 2 17.7 m/s in the experiments, while theory gives Uc 2: 28.7 m/s, 
displaying a similar degree of discrepancy between theory and experiment as that 
in table 3. 

7. Conclusion 
In  this paper a theory has been presented, based on the hypothesis that  ovalling of 

shells in cross flow may be an aeroelastic phenomenon independent of any flow 
periodicity in the wake. The theoretical results have shown that: 

(i) ovalling (flutter) may indeed be induced by the proposed mechanism; 
(ii) flutter in the even- and odd-numbered circumferential modes occurs with a 

node and an antinode, respectively, facing the free stream; 
(iii) the presence of a splitter plate results in slightly higher critical flow velocities, 

but otherwise-similar dynamical behaviour. 
All of these theoretical predictions are in qualitative agreement with experimental 

observations; furthermore, for the shells tested, the modal sequence of the observed 
flutter, i.e. first in the second mode and then in the third, are as predicted by theory. 
However, quantitative agreement between predicted and measured thresholds of 
instability leaves a great deal to be desired, the onset of flutter being predicted only 
within a factor of 1.6 a t  best. 

This lack of success of the theory, in terms of quantitative prediction, may be inter- 
preted in two ways: either the fundamental hypothesis made is incorrect; or it is 
correct, but certain aspects of the theoretical model are insufficiently refined. The 
authors tend to believe the latter, in view of the extent of qualitative agreement with 
observed behaviour. Some aspects of the theoretical model which could usefully be 
tested are: ( a )  whether the mean velocity distribution and the location of the separa- 
tion point are affected insignificantly by shell deformation and surface accelerations; 
( b )  whether shell deformations (changes in shape) and mean stresses induced by the 
mean flow field have a negligible effect on the onset of flutter. These are currently 
under investigation. 
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of this work and for making available the facilities of the Low-Speed Aerodynamics 
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present some of his experimental and theoretical results. The authors also acknowledge 
the Natural Sciences and Engineering Research Council of Canada and Le Programme 
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Appendix. Flutter analysis for ovalling with a node facing the free stream 
If a node is situated a t  0 = 0, then 

aw* 
at 
-- - 0. 

Utilizing the fact thatf(0)  = 0, (3) and (4) reduce to 

#$ = eiWt z D(h)  r-A sin M, 

$: = e i w t  5 D(A) rh sin AB. 

Hence w* and v* in this case are expanded in the form 

A = l  

h = l  

03 

w* = eiot z B, sin (2Z + 1) no, 
I = O  

m 

l = O  
v* = eiiot z A ,  cos (22 + 1) n0, 

and the problem may be solved in the same manner as in $3 .  
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